Did You Know?


The hardest substance in the human body is Enamel.

The hardest substance in the human body is Enamel.

Enamel is the hardest substance in the human body and contains the highest percentage of minerals, 96%, with water and organic material composing the rest. The primary mineral is hydroxyapatite, which is a crystalline calcium phosphate. Enamel is formed on the tooth while the tooth is developing within the gum, before it erupts into the mouth. Once fully formed, it does not contain blood vessels or nerves. Remineralisation of teeth can repair damage to the tooth to a certain degree but damage beyond that cannot be repaired by the body. The maintenance and repair of human tooth enamel is one of the primary concerns of dentistry.

In humans, enamel varies in thickness over the surface of the tooth, often thickest at the cusp, up to 2.5 mm, and thinnest at its border with the cementum at the cementoenamel junction (CEJ).

The normal color of enamel varies from light yellow to grayish (bluish) white. At the edges of teeth where there is no dentin underlying the enamel, the color sometimes has a slightly blue tone. Since enamel is semitranslucent, the color of dentin and any material underneath the enamel strongly affects the appearance of a tooth. The enamel on primary teeth has a more opaque crystalline form and thus appears whiter than on permanent teeth.

The large amount of mineral in enamel accounts not only for its strength but also for its brittleness. Tooth enamel ranks 5 on Mohs hardness scale and has a Young's modulus of 83 GPa. Dentin, less mineralized and less brittle, 3–4 in hardness, compensates for enamel and is necessary as a support. On radiographs, the differences in the mineralization of different portions of the tooth and surrounding periodontium can be noted; enamel appears lighter than dentin or pulp since it is denser than both and more radiopaque.

Enamel does not contain collagen, as found in other hard tissues such as dentin and bone, but it does contain two unique classes of proteins: amelogenins and enamelins. While the role of these proteins is not fully understood, it is believed that they aid in the development of enamel by serving as a framework for minerals to form on, among other functions. Once it is mature, enamel is almost totally without the softer organic matter. Enamel is avascular and has no nerve supply within it and is not renewed, however, it is not a static tissue as it can undergo mineralization changes.


Source

What's Your Reaction?

like
0
dislike
0
love
0
funny
0
angry
0
sad
0
wow
0